Optimalisasi Kualitas Citra Coronal Tracking CT Urografi Non Kontras Dengan Variasi Teknik Rekonstruksi iDose4 dan Iterative Model Reconstruction (IMR)

Authors

  • Muhamad Faik 'Aisyiyah Yogyakarta University
  • Arnefia Mei Yusnida 'Aisyiyah Yogyakarta University

DOI:

https://doi.org/10.31983/jimed.v11i2.13318

Keywords:

Image Quality, CT Urography, iDose4, IMR

Abstract

Background: Non-contrast urography CT images with iDose4 level 6 reconstruction techniques produce the best and lowest diagnostic information compared to FBP, iDose4 level 1, iDose4 level 2, iDose4 level 3, iDose4 level 4, iDose4 level 5 (Faik, 2023). The next generation of advanced reconstruction techniques that came after iDose4 is IMR capable of producing images that are free of noise (Halliburton, 2016). The purpose of the study was to determine the settings of the reconstruction technique that produces the lowest noise and the best diagnostic information.

Methods: This research is an experimental research conducted at the Salatiga City Hospital on November 2024. The noise was obtained from the results of measurements by 3 radiographers using ROI. Diagnostic information was obtained by providing a checklist to 3 radiologists. Data analysis was carried out by a statistical test of friedman.

Results: The image with iDose4 level 6 has the highest noise of 8.67, IMR level 1 has an noise of 5.68, IMR level 2 has an noise of 2.89, and IMR level 3 has the smallest noise of 1.09. Meanwhile, the image with iDose4 level 6 reconstruction technique has the highest diagnostic information of 3.00, IMR level 1 has an diagnostic information of 2.67, IMR level 2 has an diagnostic information of 2.22, and IMR level 3 has the smallest diagnostic information of 1.55.

Conclusions: The image with IMR level 3 had the lowest noise of 1.09 and the image with iDose4 level 6 had the best diagnostic information of 3.00.

References

Anikmah, S., Kartikasari, Y., & Kurniawati, A. (2020). VARIASI PENGGUNAAN REKONTRUSI ALGORITMA FBP, iDose4 DAN ITERATIVE MODEL RECONTRUCTION (IMR) TERHADAP KUALITAS CITRA MCST THORAK LOW DOSE UNTUK MENDETEKSI NODUL PARU. JRI (Jurnal Radiografer Indonesia), 3, 76–79. https://doi.org/10.55451/jri.v3i2.72

Arapakis, I., Efstathopoulos, E., Tsitsia, V., Kordolaimi, S., Economopoulos, N., Argentos, S., Ploussi, A., & Alexopoulou, E. (2014). Using “iDose4†iterative reconstruction algorithm in adults’ chest-abdomen-pelvis CT examinations: Effect on image quality in relation to patient radiation exposure. British Journal of Radiology, 87(1036). https://doi.org/10.1259/bjr.20130613

Azien Laqmani, Maximillian Kurfürst, Sebastian Butscheidt, Susanne Sehner, Jakob Schmidt-Holtz, Cyrus Behzadi, Hans Dieter Nagel, Gerhard Adam, M. R. (2016). CT Pulmonary Angiography at Reduced Radiation Exposure and Contrast Material Volume Using Iterative Model Reconstruction and iDose4 Technique in Comparison to FBP - PubMed. PloS One, 11(9). https://doi.org/10.1371/journal.pone.0162429

Bardha Dervishi, Fjolla Hyseni, Juna Musa, Kristi Saliaj, Valon Vokshi, Loran Rakovica, Fareeha Nasiri, Arlind Decka, Eram Ahsan, Ineida Boshnjaku, Essa Mohamed, Rilind Sylaj, Dijon Musliu, Krenare Shabani, Arif Musli, Guri Hyseni, Z. G. (2022). The importance of CT Urography in early diagnosis of anatomical variations in urogenital tract_ case presentation - PMC. Elsevier, 17(10), 4025–4029. https://doi.org/10.1016/j.radcr.2022.07.074

Bushberg JT, Seibert JA, Leidholdt EM, B. JM. (2014). The Essential Phisics of Medical Imaging (Fourth). Lippincot Williams & Wilkins.

Bushong, S. (2016). Radiologic Science for Technologists: Physics, Biology, and Protection (Eleventh). Elsevier.

Chinmay Bhimaji Kulkarni, Sreekumar Karumathil Pullara, Nirmal Kumar Prabhu, Sunil Patel, Aarathi Suresh, S. M. (2021). Comparison of Knowledge-based Iterative Model Reconstruction (IMR) with Hybrid Iterative Reconstruction (iDose4) Techniques for Evaluation of Hepatocellular Carcinomas Using Computed Tomography - (pp. S29–S36). https://doi.org/10.1016/j.acra.2020.08.005

En, M., Jj, F., & Jh, A. (2018). Variation of Noise with Some Scanning Parameters for Image Quality Test in a 128 Slice Computed Tomography Scanner Using Catphan700 Phantom. 1(1).

Fa, M., Choiroel Anwar, M., Indrati, R., & Gunawan Santoso, A. (2018). Utilization of furosemide to increase urine production as a negative contrast media in CT urography. In Int. J. of Allied Med. Sci. and Clin. Research (Vol. 6, Issue 3).

Faik, M. (2023). Optimization of image quality of non-contrast urography CT tracking with the selection of the right iDose 4 level iterative reconstruction technique. 4(3), 255–266.

Halliburton, S. S. (2016). Advanced Reconstruction Methods on Philips CT Systems Philips Solution for Advance Reconstruction.

Kuo, Y., Lin, Y.-Y., Lee, R.-C., Lin, C.-J., Chiou, Y.-Y., & Guo, W.-Y. (2016). Comparison of image quality from filtered back projection, statistical iterative reconstruction, and model-based iterative reconstruction algorithms in abdominal computed tomography. Medicine, 95, e4456. https://doi.org/10.1097/MD.0000000000004456

Laqmani, A., Avanesov, M., Butscheidt, S., Kurfürst, M., Sehner, S., Schmidt-Holtz, J., Derlin, T., Behzadi, C., Nagel, H. D., Adam, G., & Regier, M. (2016). Comparison of image quality and visibility of normal and abnormal findings at submillisievert chest CT using filtered back projection, iterative model reconstruction (IMR) and iDose(4)TM. European Journal of Radiology, 85(11), 1971–1979. https://doi.org/10.1016/j.ejrad.2016.09.001

Low, K. T. A., & Teh, H. S. (2015). CT urography: An update in imaging technique. Current Radiology Reports, 3(8). https://doi.org/10.1007/s40134-015-0110-3

Morton, T. (2015). Basic IMR testing , considerations and image quality trends.

Purnomo, B. B. (2015). Dasar-Dasar Urologi (III). CV Sagung Seto.

Qiu, D., & Seeram, E. (2018). Does Iterative Reconstruction Improve Image Quality and Reduce Dose in Computed Tomography ? September 2016. https://doi.org/10.17140/ROJ-1-108

Seo, N., Chung, Y. E., An, C., Choi, J.-Y., Park, M.-S., & Kim, M.-J. (2018). Feasibility of radiation dose reduction with iterative reconstruction in abdominopelvic CT for patients with inappropriate arm positioning. PloS One, 13(12), e0209754. https://doi.org/10.1371/journal.pone.0209754

Sulaksono, N., Ardiyanto, J., & Diponegoro, U. (2016). Jurnal Riset Kesehatan MENGGUNAKAN TRACKING DENGAN VARIASI SLICE [ English Title : THE OPTIMIZATION OF URINARY TRACT MSCT IMAGE USING A. 5(1), 30–34.

Willemink, M. J., de Jong, P. A., Leiner, T., de Heer, L. M., Nievelstein, R. A. J., Budde, R. P. J., & Schilham, A. M. R. (2013). Iterative reconstruction techniques for computed tomography Part 1: technical principles. European Radiology, 23(6), 1623–1631. https://doi.org/10.1007/s00330-012-2765-y

Willemink, M. J., Leiner, T., de Jong, P. A., de Heer, L. M., Nievelstein, R. A. J., Schilham, A. M. R., & Budde, R. P. J. (2013). Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality. European Radiology, 23(6), 1632–1642. https://doi.org/10.1007/s00330-012-2764-z

Downloads

Published

2025-07-31

Issue

Section

Articles