DETECTION OF RPOB GENE MUTATIONS IN MYCOBACTERIUM TUBERCULOSIS

Widodo¹; Ahmad Riadi²; Devi Etevia Purlinda³; Lilik Setiyowati⁴; Roni Afriansah⁴

¹²³⁴ Poltekkes Kemenkes Semarang, Indonesia

Widodo
Email: Widodosst125@gmail.com

ABSTRACT
The development of treatment for tuberculosis infection gives hope for a complete cure, but over time the use of drugs has an impact on the emergence of strains of Mycobacterium tuberculosis that are resistant to drugs, increasing the speed of diagnostics of resistance, it is necessary to develop one of which is a PCR-based molecular method for determining gene mutations that are caused by drug resistance, one of the drug targets used. rpoB is used, the use of rpoB primer as a marker of mutation is expected to have an impact as an alternative to molecular rapid detection. The rpoB band length of 318 bp was suitable for the Mycobacterium tuberculosis group. The results showed that at codon 509 the AGC to AAT change occurred, an amino acid change from serine to Apagar, a CAG nucleotide change to CCG at codon 510 changed the amino acid glutamine to proline, codon 514 changed the TTC nucleotide to TTG converts the amino acid Phenylalanine to leucine, codon 515 changes the ATG nucleotide to GTG, this change causes the change of the amino acid Methionine to Valine. These changes lead to resistance to Rifampicin

Keywords: Mycobacterium tuberculosis, Resistance, Mutasi gen rpoB

Introduction
Pulmonary tuberculosis (TB) is an infectious disease which is a priority health problem in developing countries including Indonesia, TB (Tuberculosis) is an infectious disease usually caused by bacteria (Mycobacterium tuberculosis), which mostly attacks the human lungs. (1), (2), (3). Drug-resistant Mycobacterium tuberculosis undergoes genetic mutations in cell wall formation and cell wall permeability systems that affect drug activity. Mycobacterium tuberculosis, a pathogen that causes tuberculosis, has a thick cell envelope rich in specific lipids consisting of glycolipids and glycans

The molecular target for rifampicin activity and resistance is the bacterial RNA polymerase encoded by rpoB. Mycobacterium tuberculosis may use different metabolic pathways that contribute to drug activity/resistance (4).

Multidrug-resistant (MDR) strains of Mycobacterium tuberculosis, defined as resistant to at least isoniazid and rifampicin, have emerged as a major health threat worldwide. Spontaneous point mutations in various M. tuberculosis genes confer resistance to isoniazid, with the most frequent gene targets being katG; and resistance to rifampicin is usually due to mutations in the rpoB gene (5).

The State of Indonesia implemented the Mycobacterium tuberculosis identification
procedure using the Rapid Molecular Test method to detect mutations in the rpo B gene, mutations in the rifampicin drug target gene, which must be confirmed with a drug susceptibility test (DST) which requires examination time for the Mycobacteria Growth Indicator Tube (MIGT) method, between 7 days. up to 21 days and the conventional Lowenstein Jensen method takes 6 weeks to 8 weeks.

Research methods
This research is a descriptive observational study observing rpoB gene mutations using special primers using the qRT PCR method. Extraction of Mycobacterium tuberculosis DNA using GeneAll reagent with the principle of centrifugation and precipitate by making slight adjustments to the cell lysis process using a temperature of 100° C for 10 minutes. Optimization of 950 C PCR for 5 minutes, 950 C denaturation for 15 seconds, 550 C aneling for 15 seconds and 720 C extension for 30 seconds.

The primer used for the gene rpo B F1 : CGA TCA CAC CGC AGA CGT TG, R1 : GGT ACG GCG TTT CGA TGA AC is located at Start position: 761019 End position: 761336 with length: 318 bp suitable for the Mycobacterium tuberculosis group

Hasil dan Pembahasan
The results of the study using the rpoB gene specific primer from the test sample Figure 1. Shows the results of the qRT PCR examination between 9.62 to 21.65 this provides information that the DNA content at the time of extraction affects the appearance of Ct. High DNA content and specific primer will accelerate the appearance of Ct.

Figure 2. Electrophoresis results from samples selected for sequencing
proline, codon 514 the TTC nucleotide changed to TTG changed the amino acid Phenylalanine to leucine, codon 515 changes the ATG nucleotide to GTG, this change causes the change of the amino acid Methionine to Valine. These changes lead to resistance to Rifampicin.

Mutations of Mycobacterium tuberculosis in the rifampicin resistance determining region (RRDR) in the rpoB gene, mutations in other genes rpoA and rpoC can increase Mycobacterium tuberculosis's resistance to OAT. Ma, et al 2021. Genetic mutations in rpoB mostly occur in Asp441Val, Ser456Trp, Ser456Gln, Arg454Gln, His451Gly, and His451Pro (6)).


Rifampicin is a strong bactericidal agent for the treatment of M. tuberculosis infection in both log and stationary phases by inhibiting RNA polymerase (RNAP) mechanism. Blocks RNA elongation when transcription is at the 5’ end or reduces the affinity of RNAP to short RNA transcripts. Mutations will affect the action of the drug in inhibiting RNA polymerase (RNAP).

(9)

The rpoB gene for the RNA polymerase B subunit, is the target of rifampicin which is present in all bacteria with varying length and sequence between bacterial species. In 1993 the numbering was determined based on the annotation sequence of Escherichia coli (Andre et al. 2017) The genetic mutation of rpoB M. tuberculosis at codons (amino acids) 435, 445 and 450 can be equated with codons 516, 526 and 531 in the E.coli numbering system

Mycobacterium tuberculosis is not like gram-positive or gram-negative bacteria in its life development which is capable of gene transformation. In its development, if Mycobacterium tuberculosis has experienced drug resistance to infect people, then that person will also get an infection with the same resistance. If this happens, it can be concluded from one type of drug resistance, for example Isoniazid (monoresistant), to Multi-drug Resistant (MDR) resistant to Isoniazid, and Rinfamizin, being Extensively Drung Resistant (XDR) which is MDR plus Fluoroquinolone and one of the second-line injection drugs amikacin, kanamycin or rifampin, the most extreme thing will be Totally drug resistant (TDR) all resistant drugs. That's what will happen if not handled properly. Genetic diversity of Mycobacterium tuberculosis by region will provide information on the distribution of these strains and genetic mutations provide information on polymorphism between strains for gene mutation mapping.

Conclusion

The primer used was able to amplify the rpoB target gene in Mycobacterium tuberculosis with a band length of 318 bp covering an 81 bp RRDR region with mutations at codons 509, 510, 514 and 515 which caused Mycobacterium tuberculosis to be resistant to Rifamphin.

Daftar Pustaka
1. Harta Wedari NLP, Pranata IWA, Budayanti NNS, Sukrama IDM. Tuberculosis cases comparison in developed country (Australia) and developing country (Indonesia): a comprehensive review from clinical, epidemiological, and microbiological aspects. Intisari Sains Medis. 2021;12(2):421.


